A Differential Covariance Matrix Adaptation Evolutionary Algorithm for real parameter optimization

نویسندگان

  • Saurav Ghosh
  • Swagatam Das
  • Subhrajit Roy
  • Sk. Minhazul Islam
  • Ponnuthurai N. Suganthan
چکیده

Hybridization in context to Evolutionary Computation (EC) aims at combining the operators and methodologies from different EC paradigms to form a single algorithm that may enjoy a statistically superior performance on a wide variety of optimization problems. In this article we propose an efficient hybrid evolutionary algorithm that embeds the difference vector-based mutation scheme, the crossover and the selection strategy of Differential Evolution (DE) into another recently developed global optimization algorithm known as Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES). CMA-ES is a stochastic method for real parameter (continuous domain) optimization of non-linear, non-convex functions. The algorithm includes adaptation of covariance matrix which is basically an alternative method of traditional Quasi-Newton method for optimization based on gradient method. The hybrid algorithm, referred by us as Differential Covariance Matrix Adaptation Evolutionary Algorithm (DCMA-EA), turns out to possess a better blending of the explorative and exploitative behaviors as compared to the original DE and original CMAES, through empirical simulations. Though CMA-ES has emerged itself as a very efficient global optimizer, its performance deteriorates when it comes to dealing with complicated fitness landscapes, especially landscapes associated with noisy, hybrid composition functions and many real world optimization problems. In order to improve the overall performance of CMA-ES, the mutation, crossover and selection operators of DE have been incorporated into CMA-ES to synthesize the hybrid algorithm DCMA-EA. We compare DCMA-EA with original DE and CMA-EA, two best known DE-variants: SaDE and JADE, and two state-of-the-art real optimizers: IPOP-CMA-ES (Restart Covariance Matrix Adaptation Evolution Strategy with increasing population size) and DMS-PSO (Dynamic Multi Swarm Particle Swarm Optimization) over a test-suite of 20 shifted, rotated, and compositional benchmark functions and also two engineering optimization problems. Our comparative study indicates that although the hybridization scheme does not impose any serious burden on DCMA-EA in terms of number of Function Evaluations (FEs), DCMA-EA still enjoys a statistically superior performance over most of the tested benchmarks and especially over the multi-modal, rotated, and compositional ones in comparison to the other algorithms considered here. 2011 Published by Elsevier Inc. y Elsevier Inc. osh), [email protected] (S. Das), [email protected] (S. Roy), [email protected] ganthan). 200 S. Ghosh et al. / Information Sciences 182 (2012) 199–219

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-parameter Optimization Using Stigmergy

This paper describes the so-called Differential Ant-Stigmergy Algorithm (DASA), which is an extension of the Ant-Colony Optimization for continuous domain. A performance study of the DASA on a benchmark of real-parameter optimization problems is presented. The DASA is compared with a number of evolutionary optimization algorithms including covariance matrix adaptation evolutionary strategy, dif...

متن کامل

Task Scheduling Algorithm Using Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in Cloud Computing

The cloud computing is considered as a computational model which provides the uses requests with resources upon any demand and needs.The need for planning the scheduling of the user's jobs has emerged as an important challenge in the field of cloud computing. It is mainly due to several reasons, including ever-increasing advancements of information technology and an increase of applications and...

متن کامل

A Computationally Efficient Evolutionary Algorithm for Real-Parameter Optimization

Due to increasing interest in solving real-world optimization problems using evolutionary algorithms (EAs), researchers have recently developed a number of real-parameter genetic algorithms (GAs). In these studies, the main research effort is spent on developing an efficient recombination operator. Such recombination operators use probability distributions around the parent solutions to create ...

متن کامل

THE CMA EVOLUTION STRATEGY BASED SIZE OPTIMIZATION OF TRUSS STRUCTURES

Evolution Strategies (ES) are a class of Evolutionary Algorithms based on Gaussian mutation and deterministic selection. Gaussian mutation captures pair-wise dependencies between the variables through a covariance matrix. Covariance Matrix Adaptation (CMA) is a method to update this covariance matrix. In this paper, the CMA-ES, which has found many applications in solving continuous optimizatio...

متن کامل

Covariance Matrix Self-Adaptation and Kernel Regression - Perspectives of Evolutionary Optimization in Kernel Machines

Kernel based techniques have shown outstanding success in data mining and machine learning in the recent past. Many optimization problems of kernel based methods suffer from multiple local optima. Evolution strategies have grown to successful methods in non-convex optimization. This work shows how both areas can profit from each other. We investigate the application of evolution strategies to N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Sci.

دوره 182  شماره 

صفحات  -

تاریخ انتشار 2012